8.6 - The Distance Formula

Find the distance between each pair of points. Keep your answer in simplest radical form.

1) $(10,20),(13,16)$
2) $(-19,-16),(-3,14)$
3) Find the perimeter of $\triangle \mathrm{ABC}$ with vertices $\mathrm{A}(2,4), \mathrm{B}(8,12)$, and $\mathrm{C}(24,0)$.
4) $(15,37),(42,73)$
5) $(13,2),(7,10)$
6) Determine whether $\triangle \mathrm{DEF}$ with vertices $D(6,-6), E(39,-12)$, and $F(24,18)$ is scalene, isosceles, or equilateral.
7) Determine whether $\Delta \mathrm{GHI}$ with vertices $\mathrm{G}(2,6), 8) \quad$ Describe and correct the error in finding the $\mathrm{H}(18,2)$, and $\mathrm{I}(12,12)$ is isosceles, right, isosceles right, or equilateral.
distance between $\mathrm{A}(6,2)$ and $\mathrm{B}(1,-4)$.

$$
\begin{aligned}
A B & =\sqrt{ }(6-2)^{2}+[1-(-4)]^{2} \\
& =\sqrt{ } 4^{2}+5^{2} \\
& =\sqrt{16+25} \\
& =\sqrt{41} \\
& \approx 6.4
\end{aligned}
$$

For Exercises 9-11 use $\triangle \mathrm{ABC}$ with vertices $\mathrm{A}(-2,-2), \mathrm{B}(4,0)$, and $\mathrm{C}(0,6)$.
9) Find midpoints M, N, and P of $\overline{A C}, \overline{C B}$, and $\overline{A B}$, respectively.
10) Find the slopes of $\overline{M N}$ and $\overline{A B}$, the slopes of $\overline{M P}$ and $\overline{B C}$, and the slopes of $\overline{N P}$ and $\overline{A C}$. How do they compare?
11) Find the lengths of $\overline{M N}$ and $\overline{A B}$, the lengths of $\overline{M P}$ and $\overline{B C}$, and the lengths of $\overline{N P}$ and $\overline{A C}$. How do they compare?
12) Your school is 20 blocks east and 12 blocks south of your house. The mall is 10 blocks north and 7 blocks west of your house. You plan on going to the mall right after school. Find the distance between your school and the mall assuming there is a road directly connecting the school and the mall. One block is 0.1 mile.

A path goes around a triangular park, as shown.

a. Find the distance around the park to the nearest yard.
b. A new path and a bridge are constructed from point Q to the midpoint M of $\overline{P R}$. Find QM to the nearest yard.
c. A man jogs from P to Q to M to R to Q and back to P at an average speed of 150 yards per minute. About how many minutes does it take? Explain your reasoning.

